Strona glówna
•
FAQ
•
Szukaj
•
Użytkownicy
•
Grupy
•
Galerie
•
Rejestracja
•
Profil
•
Zaloguj się, by sprawdzić wiadomości
•
Zaloguj
Forum Forum MESA !! Strona Główna
->
Regulamin
Napisz odpowiedź
Użytkownik
Temat
Treść wiadomości
Emotikony
Więcej Ikon
Kolor:
Domyślny
Ciemnoczerwony
Czerwony
Pomarańćzowy
Brązowy
Żółty
Zielony
Oliwkowy
Błękitny
Niebieski
Ciemnoniebieski
Purpurowy
Fioletowy
Biały
Czarny
Rozmiar:
Minimalny
Mały
Normalny
Duży
Ogromny
Zamknij Tagi
Opcje
HTML:
TAK
BBCode
:
TAK
Uśmieszki:
TAK
Wyłącz HTML w tym poście
Wyłącz BBCode w tym poście
Wyłącz Uśmieszki w tym poście
Kod potwierdzający: *
Wszystkie czasy w strefie EET (Europa)
Skocz do:
Wybierz forum
Nabór do ZESPÓŁ Forum MESA
----------------
Nabór
MESA - DRUŻYNY
----------------
GKS Bełchatów
Cracovia Kraków
Dyskobolia Grodzisk Wielkopolski
Górnik Zabrze
Jagiellonia Białystok
Korona Kielce
Lech Poznań
Legia Warszawa
ŁKS Łódź
Odra Wodzisław Śląski
Polonia Bytom
Ruch Chorzów
Wisła Kraków
Zagłębie Lubin
Zagłębie Sosnowiec
MESA - OGÓLNIE
----------------
Regulamin
Terminarz
Sędziowie
Wyniki
DLA KIBICA
----------------
Typer
Rozrywka
Sonda
INNE
----------------
Hydepark
Reklama
PARTNERZY
----------------
Parnerzy w reklamie i realizacji projektu !!
Przegląd tematu
Autor
Wiadomość
bertram123
Wysłany: Pią 4:41, 14 Paź 2011
Temat postu:
He hears the commendation, not of himself, but more sweet, of that character he seeks, in every word that is said concerning character, yea, further, in every fact and circumstance, in the running river and the rustling corn. Praise is looked, homage tendered, love flows from mute nature, from the mountains and the lights of the firmament.
_________________
nike blazer
burberry scarves
lacoste watches
nike air max nm
dagj26ckf4
Wysłany: Pon 7:18, 30 Maj 2011
Temat postu: Retro Jordans De Moivres Theorem Examples cos3x, s
(cosx + i.sinx)³ = cos³x + – – i.sin³x (Equation 1)
So, cos3x = cos³x–
It is customary to state cos3x, 4x etc as a function of cosx. Using the common trigonometric identity
As one sample, take the circumstance of x = / 4 (or 45):
(cosx)^4 + + + + (i.si
= 1, which is equal to sin(π/2) as expected.
cos3x = real part of
(cosx + i.sinx)^4 =
(cos³x + – – i.sin³x)
(cosx + i.sinx)³ = cos³x + 3. + + (i.sinx)³
a + i.b = c + i.d, then
De Moivre’s Theorem For cos4x and sin4x
De Moivre’s Theorem For cos3x and sin3x
cos(π / 4) = 0.7071, so cos(3π / 4)
It is often general to express this in terms of sinx, so
The following treads are used
Retro Jordans
, without beyond explanation, for these have been narrated yet for cos3x and sin3x:
Eliminate cosx terms in the statement as sin4x where possible
(cosx + i.sinx)^4 = cos4x + i.sin4x,
sin3x = 3.(1 – sin²x). sinx – sin³x
a = c, and b = d.
Expand the power term using the Binomial Theorem to obtain the overall expression
Set sin4x equal to the imaginary part of the expression
Eliminate sinx terms in the expression for cos4x where possible
The Binomial Theorem may be used to distend the left hand side:
To find the formula for sin3x, Equation 1 is used:
sin(π/6) = 0.5, and sin³(π/6) = 0.125,
Gather real and imaginary terms
so sin(3×π/6) = sin(π/2)
Set cos4x equal to the real part of the expression
This is equal to cos(3 / 4) as expected.
where i = √(-1)
= – sin³x
= cos³x – 3.cosx + 3.cos³x
Noting that if two complex mathematics are alike, then the real parts of those numbers must be the same, and the complex ("fantastic") parts of those numbers are the same.
Read on
Trigonometric Identity Advanced Example
Trigonometric Identities Lesson and Manipulating Trig Functions
Trigonometry Sin(a+b) Cos(a+b) Sin(a)+Sin(b) Cos(a)+Cos(b)
if
With this in mind, it must follow that
Verifying this with x = / 6 (alternatively 30)
sin²x + cos²x = 1, and restating it as
cos³x–
= cos³x – 3. cosx (1 – cos²x)
where i = √(-1)
= 3.sinx – 4.sin³x
(cosx + i.sinx)^3 = cos³x + – – i.sin³x (Equation 1)
State De Moivre’s Theorem
(cosx + i.sinx)^3 = cos3x + i.sin3x,
= 3×0.5 – 4×0.125
= 1.5 – 0.5
sin3x = imaginary part of (cos³x + – – i.sin³x)
= -0.7071
sin²x = 1 - cos²x, then cos3x becomes
This article explains in detail how De Moivre's Theorem may be accustom to detect the cosine and sine of 3x and 4x. Formulas for cos2x and sin2x are derived in the article "De Moivres Theorem Description With Examples and Application". Note that cos²x method the square of the cosine of x, (cosx)². Fig 1 and Fig 2 show how to find cos5x and sin5x using De Moivre's Theorem respectively.
= 3.sinx – 3.sin³x – sin³x
= 4.cos³x – 3.cosx
= -
= 4×0.3536 – 3×0.7071
fora.pl
- załóż własne forum dyskusyjne za darmo
Theme
FrayCan
created by
spleen
&
Download
Powered by
phpBB
© 2001, 2005 phpBB Group
Regulamin