Autor Wiadomość
vzeucvprjfe
PostWysłany: Czw 11:34, 31 Mar 2011    Temat postu: 一类积分不

一类积分不等式成立的条件
r)(r,t)]dt+I[(r,t3)(r,t)+f(r,t3)t1(r,t)]dt+I.“dt3+I.“dt2TrrJ0J0J0Wefindg(0)=g(0)=(0)=g0’(0)=0,g“’(0)=(0,0)>0Thereforeg(,):g(0)(o)r+r2+r3+r+0(r):r+0(r)Itisthusclearthatthereexista>0,suchthatifr∈(一,),theng(r)>0.ThiscompletestheproofofTheorem1.Remark.FromtheproofofTheorem1,itisnothardtofindthatTheorem1canbeextendedtotheeaseinwhichfisan.variables(n≥3)function,thatis,supl~sef(0)≠0,fhas(n一1)·thorderpartialderivative,thenthereexista>0,suchthatifr∈(一,)thenformula(1)holds.Undergeneralconditions,formula(1)doesnothold.Thefollowingisacounter—example.Example.Letf1((,,,)∈D)(,Y)={一1((,Y)∈D一)【0((,,,)隹D+uD一)where:D={(,Y)I1<<2,0<Y<1一x12}D一={(,Y)I1<<2,1一x12<Y<2一}Thenifr≥2,肌(f,f4)df4df3df2fl<0Proof.Wehaveft3((t2,t3)∈D)F(t,f3):,f4)dr:{2一t一t,’f3)∈D一)J0l【0((t,t,)隹DUD一)LetD={(,Y)10≤≤Y}D={(,Y)I1<Y<65292>2x一2}D2={(,Y)I1<Y<2x一2,<2>fand1一(0<t3<1一tl/2)(1一tl/2<t3<1一t2/2)(1一t2/2<t3<2一t1)(2一tl<t3<t2>0),f3)f3)=t。一hip+hip…JOJOJl一.,2Jl—1,2Moreover,if(tl,t2)∈D2thenct。,tct,t=={——≥(0<t3<1一tl/2)(1一tl/2<t3<2一t1)(2一tl<t3<t2)j.厂ct-,tFctz,tdt=j.一+j.:::=一c一<。Andif(tI,t2)∈D—DIUD2,thenf(tI,t3)F(t2,t3)=0.Therefore,ifr≥2,肌00肼(I't)dt4dI2t:f『[fl'f)F(f2'f)df]dI2df。JJDJO=~DlUD2[(I2)dt3z=ⅡDl(f1)(1_+zdIl+Ⅱ(1_f2dt·<0ThiscompletestheproofofExample.2一£幻“十O一,●●●●●●●●,、●●●●●●●●●L=、,£2£,F、,££,厂
More articles related to topics:


黑牛肝菌降血脂及抗氧化作用的实验研究_4359

铈—钼—砷三元杂多酸胍盐的合成及其性质研究_1000

一种制备Greenberger—Horne—Zeilinger态的简单方案

Powered by phpBB © 2001, 2005 phpBB Group